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The setting and the main result

Goal

To couple the Dirac operator with electrostatic and Lorentz scalar potentials shrinking
on the boundary of a smooth domain and to take the limit.

Free Dirac operator in R3

H = �i↵ · r + m�, mass = m > 0, ↵ = (↵
1

,↵
2

,↵
3

), ↵
j

,� 2 M
4⇥4

(C),
↵2

j

= �2

= 1, {↵
j

,↵
k

} = {↵
j

,�} = 0 ; Cli↵ord algebra structure.

Remarks

H : C1
c

(R3

)

4 ! C1
c

(R3

)

4

1st order symmetric di↵erential operator.

H2 = (�� + m2)I4 ; Local version of

p
��+m2

, in the spirit of 4� = @
z

@
z

in R2

.

Introduced by Dirac (1928) to study the electron from a relativistic point of view.

Layers and shrinking potentials

⌦ ⇢ R3

bounded smooth domain:

⌃ = @⌦, � = surface measure on @⌦, ⌫ = outward normal vector on @⌦.

Set ⌃
t

= {x⌃ + t⌫(x⌃) : x⌃ 2 ⌃}=)
S

0t<⌘ ⌃t

= {x 2 R3

: dist(x ,⌃) < ⌘}.
Given ⌘ > 0 small, V 2 L1

(R) with suppV ⇢ [�⌘, ⌘] and 0 < ✏  ⌘, define

V✏(x) =
⌘
✏

V
⇣⌘t

✏

⌘

for x = x⌃ + t⌫(x⌃) 2 R3.
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The setting and the main result

Electrostatic short range and ! -shell interactions
V✏ short range potential: H + V✏ is self-adjoint on the Sobolev space H1

(R3

)

4

.

! -shell potential: " ! H1

(R3 \ ⌃)

4

, " ± = " |
⌃

when we approach ⌃ from ⌦ or R3 \ ⌦.

Set �⌃(') = 1
2 ('+ + '�)�. Given # ! R \ {± 2} ,

H + ��⌃ is self-adjoint on { " ! H1

(R3 \ ⌃) : ($ á%)(" � " "
+

) =

�
2i

("
+

+ " �)} .

MAIN RESULT

Assume suppV # [" &, &]. Set u(t) = |&V (&t)|1/2, v(t) = sign(V (&t))u(t),

K
V

f (t) =
i
2

!

R
u(t) sign(t " s)v(s)f (s) ds, f ! L1

loc

(R).

Theorem [M., Pizzichillo, 2016]
There exist &, ! > 0 small enough such that, for any $V$

L

!
(R)

% !/& ,

H + V✏ ! H + �
e

�⌃ and H + �V✏ ! H + �
s

� �⌃
in the strong resolvent sense when ' & 0, where

#
e

=

"
Rv(t) ((1 " K 2

V

)

�1u)(t) dt, #
s

=

"
Rv(t) ((1 + K 2

V

)

�1u)(t) dt.

Remarks

[Behrndt, Exner, Holzmann, Lotoreichik, 2015]: " �+ V✏ & " �+ (

"
R V )!

⌃

.

[ÿSeba, 1989]:1D case, same formulas for #
e

, #
s

.

Take V = ( )
(�⌘,⌘) for some ( ! R such that 0 < |( |& % ! . Then,

H + V✏ & H + 2 tan(⌧⌘)!
⌃

and H + * V✏ & H + 2 tanh(⌧⌘)* !
⌃

.
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About the proof

Aim

Given a ! C \ R, to show that (H + V✏ � a)�1 ! (H + �
e

�⌃ � a)�1

in the strong sense in L2

(R3

)

4

when ' & 0.

Main ingredients

(a) Decompose (H + V✏ � a)�1
using a scaling operator.

(b) Compute the pointwise limit of each part when acting on smooth functions.

(c) Show convergence almost everywhere for functions in L2

, and then the strong

convergence, using maximal operators from Calderón-Zygmund theory.

Step (a)
Scaling operator:S✏g(x⌃, t) = 1p

✏
g

#
x
⌃

, t

✏

$
, g ! L2

(⌃ ' (" 1, 1))4.

Decomposition: (H + V✏ � a)�1 = (H � a)�1 + A✏,a

#
1 + B✏,a

$�1C✏,a,
where A✏,a,B✏,a,C✏,a are defined on ⌃ ' (" 1, 1)
using a fundamental solution of H " a, that is,

+a

(x) =
e�

(
m

2�a

2|x|

4, |x |

%
a+m* +

&
1 +

'
m2 " a2|x |

(
i$ á

x
|x |2

)
;

i
4⇡

↵ · x
|x|3 .

Lower order terms:handled as in " �+ V✏ (fundamental solution ) |x|�1
).

Leading term: in the limit it yields a singular integral on ⌃. Di�culties to show norm

convergence. We require smallness on V to show invertibility of 1 + B✏,a.
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About the proof

Step (b)

We want to compute the limit of A✏,a,B✏,a,C✏,a when ✏ ! 0. We focus on B✏,a.

For (x! , t), (y! , s) " ⌃ # ($ 1, 1) set x! t

= x⌃ + ✏t ⌫(x⌃), y! s

= y⌃ + ✏s⌫(y⌃).
Then,

B!, a

f (x! , t) = u(t)

Z 1

! 1

Z

! ✏s

�a(x! t

� y! s

)v(s)f (y! , s) d�✏s(y✏s) ds.

The leading term of �a
(x) ! k(x) = x

4" |x | 3
. Set

T! f (x! , t) =

Z 1

! 1

Z

! ✏s

k(x! t

� y! s

)f (y! , s) d�✏s(y✏s) ds,

T f (x! , t) = lim
#! 0

Z 1

! 1

Z

|x⌃" y⌃ | >#
k(x! $ y! )f (y! , s) d�(y! ) ds+

⌫(x! )

2

Z 1

! 1
sign(t$ s)f (x! , s) ds.

We want to show that T! f (x⌃, t ) ! Tf (x⌃, t ) when ✏ ! 0.

Split k = (k1, k2, k3) in normal and tangential components:

4⇡kj (x $ y) =
x
j

� y
j

|x � y|3 =
⇣ x � y
|x � y|3 · ⌫(y)

⌘

⌫
j

(y) + tan
x ,y , j .
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About the proof – continuation of Step (b)

Recall that T✏f (x⌃, t) =
"

1

�1

"
⌃✏s
k(x✏t " y✏s)f (y⌃, s) d- ✏s(y✏s) ds.

We focus on the normal component:

x
j

" y
j

|x " y |3
;

& x " y
|x " y |3

á%(y)
(

%
j

(y) =* T✏ ; T ⌫
✏ , f ; ⌫

j

f = f
j

.

Assume that f
j

is smooth on ⌃ ⇥ (�1, 1). Then, given ! > 0 we can split

T ⌫
✏ fj(x⌃, t) =

!
1

�1

!

|x✏s

�y✏s

|>�

k(x✏t

� y✏s

) á%✏s(y✏s) fj(y⌃, s) d- ✏s(y✏s) ds

+

!
1

�1

!

|x✏s

�y✏s

|�

k(x✏t " y✏s) á%✏s(y✏s)
&

f
j

(y⌃, s) � f
j

(x⌃, s)
(
d- ✏s(y✏s) ds

+

!
1

�1

f
j

(x
⌃

, s)
!

|x✏s

�y✏s

|�

k(x✏t

� y✏s

) · ⌫✏s

(y✏s

) d- ✏s(y✏s) ds.

D✏
�(t , s) =

*
B�(x✏s) \ ⌦(', s) if t % s,

B�(x✏s) + ⌦(', s) if t > s,

where ⌦(', s) is the bounded connected

component of R3 \ ⌃✏s that contains ⌦ if

s , 0 and that is included in ⌦ if s < 0.

x!t

! ⌦

⌃!s

⌃!t

" (x! )

⌦

D !
" (t, s)

" !s (y!s )

" #D !
" (t,s )

# y!s
x!s

x!

D✏
�(t, s) in the case t > s > 0.
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About the proof

Step (c)

Hardy-Littlewood maximal operator:M⇤g(x⌃) = sup�>0

1

�(B�(x⌃))

"
B�(x⌃)

|g | d- .

Maximal SIO: T⇤g(x⌃) = sup�>0

+
+"

|x
⌃

�y

⌃

|>�
k(x

⌃

" y
⌃

)g(y
⌃

) d- (y
⌃

)

+
+
.

Covering lemmas and Calderón-Zygmund theory (⌃ is smooth, - Ahlfors regular)

=* M⇤ and T⇤ are bounded in L2
.

Estimates onk: |k(x)| ! 1

|x|2 , |k(z " y) " k(x " y)| ! |z�x|
|x�y|3 if |z " x | % 1

2

|x " y |.

Recall that T✏f (x⌃, t) =
"

1

�1

"
⌃✏s
k(x✏t " y✏s)f (y⌃, s) d- ✏s(y✏s) ds.

Since f (y
⌃

, s) d�✏s

(y✏s) ) f✏(y⌃, s) d�(y
⌃

) (use the Weingarten map), we decompose

T✏f (x⌃, t)=
!

1

�1

!

|x⌃�y⌃|4✏|t�s|
k(x✏t " y✏s)f✏(y⌃, s) d- (y

⌃

) ds

+

!
1

�1

!

|x
⌃

�y

⌃

|>4✏|t�s|

#
k(x✏t

" y✏s) " k(x✏s

" y✏s)
$
f✏(y⌃, s) d- (y

⌃

) ds

+

!
1

�1

!

|x
⌃

�y

⌃

|>4✏|t�s|

#
k(x✏s

� y✏s

) " k(x⌃ � y⌃)
$
f✏(y⌃, s) d- (y

⌃

) ds

+

!
1

�1

!

|x⌃�y⌃|>4✏|t�s|
k(x

⌃

" y
⌃

)f✏(y⌃, s) d- (y
⌃

) ds.

=* |T✏f (x⌃, t )| ! M⇤f (x⌃) + T⇤f (x⌃), variants of M⇤ and T⇤ on ⌃ ' (" 1, 1).
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About the proof Ð continuation ofStep (c)

We have seen that |T! f (x⌃, t)| ! M! f (x⌃) + T! f (x⌃) for all ! > 0 and f 2 L2

,

M! and T! are bounded in L2
.

From Step (b), if f is smooth on ⌃⇥ (�1, 1), T! f (x⌃, t) ! Tf (x⌃, t) when ! ! 0.

Given " > 0 and f 2 L2

, take f
k

! f , f
k

smooth.!
!
!
"
(x

⌃

, t ) 2 ⌃⇥(�1, 1) :
!
!
! lim sup

! !0

T! f (x
⌃

, t )� lim inf

! !0

T! f (x
⌃

, t )
!
!
! > "

# !
!
!


!
!
!
" !

!
! lim sup

! !0

T! (f � f
k

)(x
⌃

, t )
!
!
! +

!
!
! lim inf

! !0

T! (f � f
k

)(x
⌃

, t )
!
!
! > "

# !
!
!


!
!{M⇤(f � f

k

)(x
⌃

) + T⇤(f � f
k

)(x
⌃

) > C" }
!
!  C

" 2

kf � f
k

k2
2

.

=) T! f (x⌃, t) ! Tf (x⌃, t) almost everywhere when ! ! 0, for all f 2 L2

.

Maximal estimates+ Dominated convergence=) T! f ! Tf in L2
.

Thus T! ! T in the strong sense when ! ! 0.
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Thanks for your attention.
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